设为首页  加入收藏
今天是:
网站首页 公司简介 产品展示 系统应用 新闻动态 产品知识 质量保证 惠顾留言 联系方式
BDKJ-TSF-I型 电力滤波补偿装置
BDKJ-TSF-II型 电力滤波补偿装置
BDKJ-TSC 滤波无功补偿装置
BDKJ-TC 智能无功补偿装置
BDKJ-LC-I型 电力滤波补偿装置
BDKJ-LC-II型电力滤波补偿装置
BDKJ-FC I型补偿装置
BDKJ-FC II型补偿装置
BDKJ-APF有源电力滤波装置
智能滤波补偿单元
DBKJ-JC型在线式电能质量监测系统
BDKJ-WT电力工业无线温度监控系统
BDKJ-JX微机消谐装置
BDKJ-BY便携式谐波分析仪
保定市北电电气科技有限公司
地址:保定市高开区御风路388号
邮编:072150
电话:0312-3166712
联系人: 王经理
Email:rxdl@0312rx.com

 
首页->新闻动态
 

谐波与不平衡电流的危害

谐波简单地说,就是一定频率的电压或电流作用于非线性负载时,会产生不同于原频率的其它频率的正弦电压或电流的现象。
        纹波是指在直流电压或电流中,叠加在直流稳定量上的交流分量。它们虽然在概念上不是一回事,但它们之间有联系。如电源上附加的纹波在用电器上很容易产生各频率的谐波;电源中各频率谐波的存在无疑导致电源中纹波成分的增加。
        除了在电路中我们所需要产生谐波的情况以外,它主要有以下主要危害:
  1、使电网中发生谐振而造成过电流或过电压而引发事故;
  2、增加附加损耗,降低发电、输电及用电设备的效率和设备利用率;
  3、使电气设备(如旋转电机、电容器、变压器等)运行不正常,加速绝缘老化,从而缩短它们的使用寿命;
  4、使继电保护、自动装置、计算机系统及许多用电设备运转不正常或不能正常动作或操作;
  5、使测量和计量仪器、仪表不能正确指示或计量;
  6、干扰通信系统,降低信号的传输质量,破坏信号的正常传递,甚至损坏通信设备。
  纹波的害处:
  1、容易在用电器上产生谐波,而谐波会产生较多的危害;
  2、降低了电源的效率;
  3、较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器;
  4、会干扰数字电路的逻辑关系,影响其正常工作;
  5、会带来噪音干扰,使图像设备、音响设备不能正常工作。
  总之,它们在我们不需要的地方出现都是有害的,需要我们避免的。对于如何抑制和去除谐波和纹波的方式方法有很多,但想完全消除,似乎是很难办到的,我们只有将其控制在一个允许的范围之内,不对环境和设备产生影响就算达到了我们的目的。
  近年来, 电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS) 、节能荧光灯系统等,这些非线性负载将导致电网污染,电力品质下降,引起供用电设备故障, 甚至引发严重火灾事故等。
  电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。
  1.电源 污染的危害
  电源污染会对用电设备造成严重危害,主要有:
  ? 干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。
  ? 影响无线电发射系统、雷达系统、核磁共振等设备的工作性能, 造成噪声干扰和图像紊乱。
  ? 引起电气自动装置误动作,甚至发生严重事故。
  ? 使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
  ? 造成灯光亮度的波动(闪变),影响工作效益。
  ? 导致供电系统功率损耗增加。
  2.电源污染的种类
  2.1 电压波动及闪变
  电压波动是指多个正弦波的峰值,在一段时间内超过(低于)标准电压值,大约从半周波到几百个周波,即从10MS到2.5秒, 包括过压波动和欠压波动。普通避雷器和过电压保护器,完全不能消除过压波动,因为它们是用来消除瞬态脉冲的。普通避雷器在限压动作时有相当大的电阻值,考虑到其额定热容量(焦尔),这些装置很容易被烧毁,而无法提供以后的保护功能。这种情况往往很容易忽视掉,这是导致计算机、控制系统和敏感设备故障或停机的主要原因。
  另一个相反的情况是欠压波动,它是指多个正弦波的峰值,在一段时间内低于标准电压值,或如通常所说:晃动或降落。长时间的低电压情况可能是由供电公司造成或由于用户过负载造成,这种情况可能是事故现象或计划安排。更为严重的是失压,它大多是由于配电网内重负载的分合造成,例如大型电动机、中央空调系统、电弧炉等的启停以及开关电弧、保险丝烧断、断路器跳闸等,这些都是通常导致电压畸变的原因。
  大型用电设备的频繁启动导致电压的周期性波动,如电焊机、冲压机、吊机、电梯等,这些设备需要短时冲击功率,主要是无功功率。电压波动导致设备功率不稳,产品质量下降;灯光的闪变引致眼睛疲劳,降低工作效率。
  2.2 浪涌冲击
  浪涌冲击是指系统发生短时过(低)电压,即时间不超过1毫秒的电压瞬时脉冲,这种脉冲可以是正极性或负极性,可以具有连串或振荡性质。它们通常也被叫作:尖峰、缺口、干扰、毛刺或突变。
  电网中的浪涌冲击既可由电网内部大型设备(电机、电容器等)的投切或大型晶闸管的开断引起,也可由外部雷电波的侵入造成。浪涌冲击容易引起电子设备部件损坏,引起电气设备绝缘击穿;同时也容易导致计算机等设备数据出错或死机。
  2.3 谐波
  线性负载,例如纯电阻负载,其工作电流的波形与输入电压的正弦波形完全相同,非线性负载,例如斩波直流负载,其工作电流是非正弦波形。传统的线性负载的电流/电压只含有基波(50Hz),没有或只有极小的谐波成分,而非线性负载会在电力系统中产生可观的谐波。
  谐波与电力系统中基波叠加,造成波形的畸变,畸变的程度取决于谐波电流的频率和幅值。非线性负载产生陡峭的脉冲型电流,而不是平滑的正弦波电流,这种脉冲中的谐波电流引起电网电压畸变,形成谐波分量,进而导致与电网相联的其它负载产生更多的谐波电流。
  计算机是此类非线性负载之一,象绝大多数办公室电子设备一样,计算机装有一个二极管/电容型的供电电源,这类供电电源仅在交流正弦波电压的峰值处产生电流,因此产生大量的三次谐波电流(150Hz)。其它产生谐波电流的设备主要有:电动机变频调速器,固态加热器,和其他一些产生非正弦波变化电流的设备。
  荧光灯照明系统也是一个重要的谐波源,在普通的电磁整流器灯光电路中,三次谐波的典型值约为基波(50Hz)值的13%-20%。而在电子整流器灯光电路中,谐波分量甚至高达80%。
  非线性负载所产生的谐波电流会影响电力系统的多个工作环节,包括变压器,中性线,还有电动机,发电机和电容器等。谐波电流会导致变压器,电动机和备用发电机的运行温度(K参数)严重升高。中性线上的过电流(由谐波和不平衡引起)不仅会使导线温度升高,造成绝缘损坏,而且会在三相变压器线圈中产生环流,导致变压器过热。无功补偿电容器会因电网电压谐波畸变而产生过热,谐波将导致严重过流;
  另外,电容器还会与电力系统中的电感性元件形成谐振电路,这将导致电容器两端的电压明显升高,引致严重故障。照明装置的启辉电容器对于由高频电流引起的过热也是十分敏感的,启辉电容器的频繁损坏显示了电网中存在谐波的影响。谐波还会引起配电线路的传输效率下降,损耗增大,并干扰电力载波通讯系统的工作,如电能管理系统(EMS)和时钟系统。而且,谐波还会使电力测量表计,有功需量表和电度表的计量误差增大。
  2.4 三相不平衡
  三相不平衡会在中性线上产生过电流(由谐波和不平衡引起)不仅会使导线温度升高,造成绝缘损坏,而且会在三相变压器线圈中产生环流,导致变压器过热, 甚至引发严重火灾事故等。
  3.电源污染的治理
  对于现有供电网络或待建电网中的电力污染情况,要进行仔细分析,通常解决的方法有两个:一是局部重组电网结构,分离或隔离产生电力污染的设备;二是使用电源净化滤波设备进行治理,通常电压谐波是由电流谐波产生的,有效地抑制电流谐波就会使电压畸变达到要求的范围。国内外很多单位已开始重视电源污染的治理, 投资安装电源净化滤波装置, 取得了提高电源品质和节能的双重效果。
  电源污染的治理主要有以下几种方法:
  ? 串联电抗器
  ? 有源滤波补偿
  ? 无源滤波补偿
  ? 增加整流设备的相数
  ? 安装各种突波吸收保护装置,如避雷器等
  目前,无源滤波补偿是实际应用最多、效果较好、价格较低的解决方案,它包括三种基本形式:串联滤波、并联滤波和低通滤波(串并混合)。其中串联滤波主要适用于三次谐波的治理;低通滤波主要适用于高次谐波的治理;并联滤波是一种综合装置,它可滤除多次谐波,同时提供系统的无功功率,是应用最广泛的电源净化滤波装置
  近年来,随着电力电子技术的发展,有源滤波补偿技术日益成熟,并得到了广泛应用。较传统的无源滤波补偿系统,它具有功能多,适应性好及响应速度快等优点,随着价格的不断下降,应用将日益普遍。有源滤波补偿系统在很多重要场所应用效果非常好。
   不平衡电流的危害
  电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。
  电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。
  理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。
  不平衡电流对系统铜损的影响
  设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡,IA=100A,IB=100A,IC=100A,则总铜损=1002R+1002R+1002R=30000R。
  如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损=502R+1002R+1502R=35000R,比平衡状态的铜损增加了17%。
  在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损=1502R+1502R=45000R,比平衡状态的铜损增加了50%。
  在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=3002R=90000R,比平衡状态的铜损增加了3倍。
  不平衡电流对变压器的影响
  现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事故。由于Yyn0结线组的配电变压器与的零序激磁阻抗较大,因此零线电流会造成较大的电压变化,形成比较严重的三相电压不平衡现象,不但影响单相用户,对三相用户的影响更大 。
3 三相负荷不平衡的危害
  3.1 对配电变压器的影响
  (1)三相负荷不平衡将增加变压器的损耗:
  变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。
  从数学定理中我们知道:假设a、b、c 3个数都大于或等于零,那么a+b+c≥33√abc 。
  当a=b=c时,代数和a+b+c取得最小值:a+b+c=33√abc 。
  因此我们可以假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下:
  Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕
  由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。
  则变压器损耗:
  当变压器三相平衡运行时,即Ia=Ib=Ic=I时,Qa+Qb+Qc=3I2R;
  当变压器运行在最大不平衡时,即Ia=3I,Ib=Ic=0时,Qa=(3I)2R=9I2R=3(3I2R);
  即最大不平衡时的变损是平衡时的3倍。
  (2)三相负荷不平衡可能造成烧毁变压器的严重后果:
  上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。
  (3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高:
  在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。
  3.2 对高压线路的影响
  (1)增加高压线路损耗:
  低压侧三相负荷平衡时,6~10k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为: ΔP1 = 3I2R
  低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为:
  ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R);
  即高压线路上电能损耗增加12.5%。
  (2)增加高压线路跳闸次数、降低开关设备使用寿命:
  我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。
  3.3 对配电屏和低压线路的影响
  (1)三相负荷不平衡将增加线路损耗:
  三相四线制供电线路,把负荷平均分配到三相上,设每相的电流为I,中性线电流为零,其功率损耗为: ΔP1 = 3I2R
  在最大不平衡时,即某相为3I,另外两相为零,中性线电流也为3I,功率损耗为:
  ΔP2 = 2(3I)2R = 18I2R = 6(3I2R);
  即最大不平衡时的电能损耗是平衡时的6倍,换句话说,若最大不平衡时每月损失1200 kWh,则平衡时只损失200 kWh,由此可知调整三相负荷的降损潜力。
  (2)三相负荷不平衡可能造成烧断线路、烧毁开关设备的严重后果:
  上述不平衡时重负荷相电流过大(增为3倍),超载过多。由于发热量Q=0.24I2Rt,电流增为3倍,则发热量增为9倍,可能造成该相导线温度直线上升,以致烧断。且由于中性线导线截面一般应是相线截面的50%,但在选择时,有的往往偏小,加上接头质量不好,使导线电阻增大。中性线烧断的几率更高。
  同理在配电屏上,造成开关重负荷相烧坏、接触器重负荷相烧坏,因而整机损坏等严重后果。
  3.4 对供电企业的影响
  供电企业直管到户,低压电网损耗大,将降低供电企业的经济效益,甚至造成供电企业亏损经营。农电工承包台区线损,线损高农电工奖金被扣发,甚至连工资也得不到,必然影响农电工情绪,轻则工作消极,重则为了得到钱违法犯罪。
  变压器烧毁、线路烧断、开关设备烧坏,一方面增大供电企业的供电成本,另一方面停电检修、购货更换造成长时间停电,少供电量,既降低供电企业的经济效益,又影响供电企业的声誉。
  3.5 对用户的影响
  三相负荷不平衡,一相或两相畸重,必将增大线路中的电压降,降低电能质量,影响用户的电器使用。
  变压器烧毁、线路烧断、开关设备烧坏,影响用户供电,轻则带来不便,重则造成较大的经济损失,如停电造成养殖的动植物死亡,或不能按合同供货被惩罚等。中性线烧断还可能造成用户大量低压电器被烧毁的事故。


【上一个】 谈企业谐波治理 【下一个】 路桥电力谐波源测试防电压“畸变”


 · 电能质量谐波污染及谐波治理产品 · 中频炉谐波治理装置
 · 简单介绍 无功补偿与谐波治理是两码事吗? · 详解谐波治理方案技术
 · 电力系统中谐波治理的几种方法 · 分析低压谐波治理的省电技巧及原理?
 · 谐波治理的必要性及案例分析 · 安装谐波治理装置的优点
 · 什么是谐波,谐波的危害,UPS谐波治理 · 谐波治理的总体思路与预防措施
 · 电解铝厂的无功补偿及谐波治理 · 有源滤波器对于LED显示屏谐波治理的作用
 · 电网通过无功补偿与谐波治理为社会节约大量能源 · 工业电网中的谐波治理和无功补偿
 · 谐波治理和无功补偿的必要性作用 · 低压谐波治理及无功补偿的作用
 · 有源电力滤波器在谐波治理中的应用 · 高压无功补偿及谐波治理详解说明
 · 低压动态无功补偿及谐波治理的原理并针对性地给出了应用实例 · 高压电网无功补偿及谐波治理
 · 电力谐波危害及谐波治理对于电力系统是个很要命的问题 · 科学确定无功补偿方式谐波治理须从源头入手
 · 高压无功补偿及谐波治理 · 中频炉谐波治理滤波补偿装置消除电力谐波“污染”的作用
 · 浅谈你所不知的高压无功补偿及谐波治理 · 我国谐波治理现状与措施有哪些情况
 · 小波分析在电力系统谐波治理中的应用 · 高压无功补偿及谐波治理
 · 有关谐波管理及谐波治理的探讨 · 有源电力滤波器在谐波治理中的应用
 · 我国谐波治理现状与措施 · 高压无功补偿及谐波治理
 · 中频炉谐波治理特性和方案 · 矿热炉谐波治理无功补偿方案
 · 电解生产线谐波治理解决方案 · 如何正确选择合理的谐波治理方案
 · 有源滤波器在LED显示屏谐波治理中的应用 · 谐波治理的重要性及案例分析
 · 电力系统谐波治理的基本方法分析 · 通信机房谐波治理工程设计思路
 · 通信枢纽机房电力系统谐波治理与价值分析 · 谐波治理的工作原理分析研究
 · 谐波的危害及无功补偿与谐波治理的意义 · 配电网高压无功补偿与谐波治理装置可带来较大的社会效益
 · 三次谐波治理滤波器是怎么工作的? · 铸造企业对中频炉进行无功补偿和谐波治理
 · 技术解析:低压系列变频器的谐波治理方法 · 矿热炉短网低压无功补偿及谐波治理
 · 企业怎样从谐波治理中获取最大的收益 · 有源滤波器在LED显示屏谐波治理中的应用
 · 一般无源滤波器能否用于变频器的谐波治理 · 技术解析:低压系列变频器的谐波治理方法
 · 低压有源滤波装置在商务酒店谐波治理中的应用 · 浅谈谐波治理技术的发展
 · 我国谐波治理现状与措施 · 我国谐波治理技术的现状浅析
 · 谐波治理节能效果和经济效益分析 · 主动谐波治理的六种措施
 · 谐波治理与地铁交通安全性 · 低压电网谐波治理和无功补偿装置的合理选择
 · 谐波治理各方案比较分析 · 电力谐波治理装置数据采集处理系统设计
 · 中国谐波治理工程行业发展研究报告 · 电力工业部关于加强电气化铁路谐波治理工作
 · 什么是广义的谐波治理 · 谐波治理应采用什么样的措施
 · 变频器的谐波治理与无功功率补偿 · 前沿技术:UPS谐波治理
 · 医院配电系统的谐波治理 · 谈企业谐波治理
 · 小波分析在电力系统谐波治理中的应用 · 韩林谈谐波治理:化解供电系统隐形故障
 · 中国移动通信集团通信局房的电力节能与谐波治理 · 低压电网谐波治理和无功补偿装置的合理选择
 · 煤炭企业变电所谐波治理 · 谐波治理的技术探讨与工程设计的案例分析
 · 谐波治理与无功补偿技术问答 · 大亚木业谐波治理案例
 · 谐波治理对用电设施的九大有利影响 · 绿色和低碳是谐波治理的发展方向
 · 变频器工作中产生高次谐波治理的方法 · 电网中谐波治理和谐波管理的有效措施
 · 通过技术和管理措施提高谐波治理状况 · 分析谐波治理的优点及经济效益
 · 工业中谐波治理常用的四大措施 · 电网谐波的危害及谐波治理抑制技术
 · 电网在线谐波监测系统与谐波治理解决方案 · 谐波治理以及无功电流检测方法对比分析
 · 电力系统高次谐波治理分析 · 变频器电磁谐波污染及谐波治理措施
 · 电力用户谐波源分析与谐波治理对策 · 35kV变电站限制谐波措施与谐波治理
 · 一场由谐波治理引发的巨额索赔案 · 哈尔滨第二电业局开展谐波治理实现电能降损节耗
 · 谐波治理很重要,南京电网突遭谐波袭击首次出现大面积短暂断电 · 谐波治理污染日益严重净化电网刻不容缓
 · 工业电网中的谐波治理和无功补偿 · 智能建筑中谐波治理的措施
 · 变频器的谐波治理与无功功率补偿 · 铸造企业中频炉无功补偿及谐波治理
 · 有源滤波装置的谐波治理进入产业化 · 中频炉谐波治理及滤波补偿
 · 中频炉谐波治理解决方案 · 通过单晶炉专用滤波补偿装置解决谐波治理
 · 通过无功补偿进行谐波治理 · 电网中谐波治理对老化电力设备有什么好处
 · 无功补偿、谐波治理方案及元器件的选取 · 电力电子装置谐波治理问题的综述
 · 矿热炉无功补偿暨谐波治理方案 · 高频焊管专用谐波治理及无功补偿装置
 · 轧机谐波治理及无功补偿装置的应用 · 造纸行业中无功补偿及谐波治理装置的应用
 · 电解铝厂的无功补偿及谐波治理

滤波设备 滤波装置 滤波补偿 谐波治理 滤波柜
版权所有:保定市北电电气科技有限公司
电话:0312-3166712 手机:15720000016     地址:保定市高开区御风路388号
冀ICP备06017273号 网站地图